By Topic

Stability of multiagent systems with time-dependent communication links

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Moreau, L. ; Sidmar, Ghent, Belgium

We study a simple but compelling model of network of agents interacting via time-dependent communication links. The model finds application in a variety of fields including synchronization, swarming and distributed decision making. In the model, each agent updates his current state based upon the current information received from neighboring agents. Necessary and/or sufficient conditions for the convergence of the individual agents' states to a common value are presented, thereby extending recent results reported in the literature. The stability analysis is based upon a blend of graph-theoretic and system-theoretic tools with the notion of convexity playing a central role. The analysis is integrated within a formal framework of set-valued Lyapunov theory, which may be of independent interest. Among others, it is observed that more communication does not necessarily lead to faster convergence and may eventually even lead to a loss of convergence, even for the simple models discussed in the present paper.

Published in:

Automatic Control, IEEE Transactions on  (Volume:50 ,  Issue: 2 )