By Topic

Manufacturability of 20-nm ultrathin body fully depleted SOI devices with FUSI metal gates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Z. Krivokapic ; AMD, Sunnyvale, CA, USA ; W. P. Maszara ; Ming-Ren Lin

Ultrathin body (UTB) fully depleted silicon-on-insulator (FDSOI) devices show great performance due to undoped channels and excellent electrostatic control. Very high drive currents and good off-state leakage, ideal subthreshold slope, and small drain-induced barrier lowering (DIBL) have been reported with devices as short as 20 nm. The ultrathin channel enables high device performance, but it imposes a new set of problems. The control of the silicon thickness has become the dominant source of device variations. Selective epitaxial growth has become a necessity to achieve high performance and reliable contacts to UTB FDSOI devices. This work discusses silicon thickness control, selective epitaxial growth, and the mid-gap gate module needed for fully depleted devices. Very good control of short channel effect is shown and drive current fluctuations are discussed.

Published in:

IEEE Transactions on Semiconductor Manufacturing  (Volume:18 ,  Issue: 1 )