By Topic

TCG: A transitive closure graph-based representation for general floorplans

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jai-Ming Lin ; Realtek Semiconductor Corp., Hsinchu, Taiwan ; Yao-Wen Chang

In this brief, we introduce the concept of the P*-admissible representation and propose a P*-admissible, transitive closure graph-based representation for general floorplans, called transitive closure graph (TCG), and show its superior properties. TCG combines the advantages of popular representations such as sequence pair, BSG, and B*-tree. Like sequence pair and BSG, but unlike O-tree, B*-tree, and CBL, TCG is P*-admissible. Like B*-tree, but unlike sequence pair, BSG, O-tree, and CBL, TCG does not need to construct additional constraint graphs for the cost evaluation during packing, implying a faster runtime. Further, TCG supports incremental update during operations and keeps the information of boundary modules as well as the shapes and the relative positions of modules in the representation. More importantly, the geometric relation among modules is transparent not only to the TCG representation but also to its operation, facilitating the convergence to a desired solution. All of these properties make TCG an effective and flexible representation for handling the general floorplan/placement design problems with various constraints. Experimental results show the promise of TCG.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:13 ,  Issue: 2 )