Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

A transaction-based unified architecture for simulation and emulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hassoun, S. ; Dept. of Comput. Sci., Tufts Univ., Medford, MA ; Kudlugi, M. ; Pryor, D. ; Selvidge, C.

The availability of millions of transistors on a single chip has allowed the creation of complex on-chip systems. The functional verification of such systems has become a challenge. Simulation run times are increasing, and emulation is now a necessity. Creating separate verification environments for simulation and emulation slows the design cycle and it requires additional human efforts. This paper describes a layered architecture suitable for both simulation and emulation. The architecture uses transactions for communication and synchronization between the driving environment (DE) and the device under test (DUT). Transactions provide synchronization only as needed and cycle and event-based synchronization common in emulators. The result is more efficient development of the DE and 100% portability when moving from simulation to emulation. We give an overview of our layered architecture and describe its implementation. Our results show that, by using emulation, the register-transfer level (RTL) implementation of an industrial design can be verified in the same amount of time it takes to run a C-based simulation. We also show two orders of magnitude speeds up over simulations of C and RTL through a programming language interface

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:13 ,  Issue: 2 )