Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Static task-scheduling algorithms for battery-powered DVS systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chowdhury, P. ; Maxim Integrated Products, Sunnyvale, CA ; Chakrabarti, C.

Battery lifetime enhancement is a critical design parameter for mobile computing devices. Maximizing the battery lifetime is a particularly difficult problem due to the nonlinearity of the battery behavior and its dependence on the characteristics of the discharge profile. In this paper, we address the problem of task scheduling with voltage scaling in a battery-powered single and multiprocessor system such that the residual charge or the battery voltage (the parameters for evaluating battery performance) is maximized. We propose an efficient heuristic algorithm using a charge-based cost function derived from the analytical battery model. Our algorithm first creates a task sequence that ensures battery survival, and then distributes the available delay slack so that the cost function is maximized. The effectiveness of the algorithm has been verified using DUALFOIL, a low-level Li-ion battery simulator. The algorithm has been validated on synthetic examples created from applications running on Compaq's handheld computing research platform, ITSY

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:13 ,  Issue: 2 )