By Topic

Holonic job shop scheduling using a multiagent system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. S. Walker ; Dept. of Mech. & Manuf. Eng., Calgary Univ., Canada ; R. W. Brennan ; D. H. Norrie

Manufacturing job shop scheduling is a notoriously difficult problem that lends itself to various approaches - from optimal algorithms to suboptimal heuristics. We combined popular heuristic job shop-scheduling approaches with emerging AI techniques to create a dynamic and responsive scheduler. We fashioned our job shop scheduler's architecture around recent holonic manufacturing systems architectures and implemented our system using multiagent systems. Our scheduling approach is based on evolutionary algorithms but differs from common approaches by evolving the scheduler rather than the schedule. A holonic, multiagent systems approach to manufacturing job shop scheduling evolves the schedule creation rules rather than the schedule itself. The authors test their approach using a benchmark agent-based scheduling problem and compare performance results with other heuristic-scheduling approaches.

Published in:

IEEE Intelligent Systems  (Volume:20 ,  Issue: 1 )