By Topic

Master slave scheduling on heterogeneous star-shaped platforms with limited memory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
A. Legrand ; LaBRI, UMR CNRS 5800, Bordeaux, France ; O. Beaumont ; L. Marchal ; Y. Robert

Summary form only given. In this work, we consider the problem of allocating and scheduling a collection of independent, equal-sized tasks on heterogeneous star-shaped platforms. We also address the same problem for divisible tasks. For both cases, we take memory constraints into account. We prove strong NP-completeness results for different objective functions, namely makespan minimization and throughput maximization, on simple star-shaped platforms. We propose an approximation algorithm based on the unconstrained version (with unlimited memory) of the problem. We introduce several heuristics, which are evaluated and compared through extensive simulations. An unexpected conclusion drawn from these experiments is that classical scheduling heuristics that try to greedily minimize the completion time of each task are outperformed by the simple heuristic that consists in assigning the task to the available processor that has the smallest communication time, regardless of computation power (hence a "bandwidth-centric" distribution).

Published in:

Cluster Computing, 2004 IEEE International Conference on

Date of Conference:

20-23 Sept. 2004