By Topic

Newton algorithms for conditional and unconditional maximum likelihood estimation of the parameters of exponential signals in noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. Starer ; Dept. of Electr. & Comput. Eng., Wollongong Univ., NSW, Australia ; A. Nehorai

The authors present polynomial-based Newton algorithms for maximum likelihood estimation (MLE) of the parameters of multiple exponential signals in noise. This formulation can be used in the estimation, for example, of the directions of arrival of multiple noise-corrupted narrowband plane waves using uniform linear arrays and the frequencies of multiple noise-corrupted complex sine waves. The algorithms offer rapid convergence and exhibit the computation efficiency associated with the polynomial approach. Compact, closed-form expressions are presented for the gradients and Hessians. Various model assumptions concerning the statistics of the underlying signals are considered. Numerical simulations are presented to demonstrate the algorithms' performance

Published in:

IEEE Transactions on Signal Processing  (Volume:40 ,  Issue: 6 )