By Topic

The Cramer-Rao bound on frequency estimates of signals closely spaced in frequency

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
H. B. Lee ; Atlantic Aerosp. Electron. Corp., Waltham, MA, USA

This paper examines the Cramer-Rao (CR) lower bound on the variance of frequency estimates for the problem of n signals closely spaced in frequency. The main results presented are simple analytic expressions for the CR bound in terms of the maximum frequency separation, δω, SNR, and the number of data vectors, N, that are valid for small δω. The results are applicable to the conditional (deterministic) signal model. The results show that the CR bound on frequency estimates is proportional to (δω)-2(n-1)/N×SNR. Therefore, the bound increases rapidly as the signal separation is reduced. Examples indicate that the expressions closely approximate the exact CR bounds whenever the signal separation is smaller than one resolution cell. Based upon the results, it is argued that the threshold SNR at which an unbiased estimator can resolve n closely spaced signals is at least proportional to (δω)-2n/N. The results are quite general and apply to many different types of temporal and spatial sampling grids

Published in:

IEEE Transactions on Signal Processing  (Volume:40 ,  Issue: 6 )