Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Linear bispectrum of signals and identification of nonminimum phase FIR systems driven by colored input

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Erdem, A.T. ; Dept. of Electr. Eng., Rochester Univ., NY, USA ; Tekalp, A.M.

The identification of non-minimum-phase finite-impulse-response (FIR) systems driven by third-order stationary colored signals that are not linear processes is addressed. Modeling the linear part of the bispectrum of a signal is discussed. The bispectrum of a signal is decomposed into two multiplicative factors. The linear bispectrum is defined as the factor of the bispectrum that can exactly be modeled using a third-order white-noise-driven linear shift-invariant (LSI) system. The linear bispectrum of the output of the unknown LSI system is represented using an ARMA (autoregressive moving average) model, where the MA parameters correspond to the unknown FIR system impulse response coefficients, and the AR parameters model the linear bispectrum of the input signal. An algorithm for identifying the MA and AR parameters is given. How the proposed method is different from fitting an ARMA model directly to the bicumulants or the bispectrum of the system output is discussed. The method is applied to blur identification

Published in:

Signal Processing, IEEE Transactions on  (Volume:40 ,  Issue: 6 )