By Topic

Gain-adapted hidden Markov models for recognition of clean and noisy speech

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Y. Ephraim ; AT&T Bell Lab., Murray Hill, NJ, USA

In applying hidden Markov modeling for recognition of speech signals, the matching of the energy contour of the signal to the energy contour of the model for that signal is normally achieved by appropriate normalization of each vector of the signal prior to both training and recognition. This approach, however, is not applicable when only noisy signals are available for recognition. A unified approach is developed for gain adaptation in recognition of clean and noisy signals. In this approach, hidden Markov models (HMMs) for gain-normalized clean signals are designed using maximum-likelihood (ML) estimates of the gain contours of the clean training sequences. The models are combined with ML estimates of the gain contours of the clean test signals, obtained from the given clean or noisy signals, in performing recognition using the maximum a posteriori decision rule. The gain-adapted training and recognition algorithms are developed for HMMs with Gaussian subsources using the expectation-minimization (EM) approach

Published in:

IEEE Transactions on Signal Processing  (Volume:40 ,  Issue: 6 )