By Topic

Optimal parallel algorithms for problems modeled by a family of intervals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Olariu, S. ; Dept. of Comput. Sci., Old Dominion Univ., Norfolk, VA, USA ; Schwing, J.L. ; Jingyuan Zhang

A family of intervals on the real line provides a natural model for a vast number of scheduling and VLSI problems. Recently, a number of parallel algorithms to solve a variety of practical problems on such a family of intervals have been proposed in the literature. The authors develop computational tools and show how they can be used for the purpose of devising cost-optimal parallel algorithms for a number of interval-related problems, including finding a largest subset of pairwise nonoverlapping intervals, a minimum dominating subset of intervals, along with algorithms to compute the shortest path between a pair of intervals and, based on the shortest path, a parallel algorithm to find the center of the family of intervals. More precisely, with an arbitrary family of n intervals as input, all the algorithms run in O(log n) time using O(n) processors in the EREW-PRAM model of computation

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:3 ,  Issue: 3 )