By Topic

Dynamic proxy tree-based data dissemination schemes for wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wensheng Zhang ; Dept. of Comput. Sci. & Eng., Pennsylvania State Univ., University Park, PA, USA ; Guohong Cao ; La Porta, T.

In wireless sensor networks, efficiently disseminating data from a dynamic source to multiple mobile sinks is important for applications such as mobile target detection and tracking. A tree-based multicasting scheme can be used. However, due to the short communication range of each sensor node and the frequent movement of sources and sinks, a sink may fail to receive data due to broken paths, and the tree should frequently be reconfigured to reconnect sources and sinks. To address the problem, we propose a dynamic proxy tree-based framework. A big challenge in implementing the framework is how to reconfigure the proxy tree efficiently as sources and sinks change. We model the problem as on-line construction of a minimum Steiner tree in a Euclidean plane, and propose centralized schemes to solve it. Considering the strict energy constraints in wireless sensor networks, we further propose two distributed on-line schemes, a shortest path-based (SP) scheme and a spanning range-based (SR) scheme. Extensive simulations are conducted to evaluate the schemes. The results show that the distributed schemes have similar performance to the centralized ones, and among the distributed schemes, SR outperforms SP.

Published in:

Mobile Ad-hoc and Sensor Systems, 2004 IEEE International Conference on

Date of Conference:

25-27 Oct. 2004