By Topic

A unified task-based dependability model for hypercube computers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Das, C.R. ; Dept. of Electr. & Comput. Eng., Pennsylvania State Univ., University Park, PA, USA ; Jong Kim

A unified analytical model for computing the task-based dependability (TDB) of hypercube architectures is presented. A hypercube is deemed operational as long as a task can be executed on the system. The technique can compute both reliability and availability for two types of task requirements-I-connected model and subcube model. The I-connected TBD assumes that a connected group of at least I working nodes is required for task execution. The subcube TBD needs at least an m-cube in an n-cube, mn, for task execution. The dependability is computed by multiplying the probability that x nodes (xI or x⩾2m) are working in an n-cube at time t by the conditional probability that the hypercube can satisfy any one of the two task requirements from x working nodes. Recursive models are proposed for the two types of task requirements to find the connection probability. The subcube requirement is extended to find multiple subcubes for analyzing multitask dependability. The analytical results are validated through extensive simulation

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:3 ,  Issue: 3 )