By Topic

Lock-free garbage collection for multiprocessors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. P. Herlihy ; Digital Equipment Corp., Cambridge, MA, USA ; J. E. B. Moss

Garbage collection algorithms for shared-memory multiprocessors typically rely on some form of global synchronization to preserve consistency. Such global synchronization may lead to problems on asynchronous architectures: if one process is halted or delayed, other, nonfaulty processes will be unable to progress. By contrast, a storage management algorithm is lock-free if (in the absence of resource exhaustion) a process that is allocating or collecting memory can be delayed at any point without forcing other processes to block. The authors present the first algorithm for lock-free garbage collection in a realistic model. The algorithm assumes that processes synchronize by applying read, write, and compare&swap operations to shared memory. This algorithm uses no locks, busy-waiting, or barrier synchronization, it does not assume that processes can observe or modify one another's local variables or registers, and it does not use inter-process interrupts

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:3 ,  Issue: 3 )