By Topic

Layout optimization for a wireless sensor network using a multi-objective genetic algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. B. Jourdan ; Dept. of Aeronaut. & Astronaut., MIT, Cambridge, MA, USA ; O. L. de Weck

This paper examines the optimization of wireless sensor network layouts. To transmit their data to the base, all the sensors are required to be connected to a high-energy communication node, which serves as a relay from the ground to a satellite or to a high-altitude aircraft. The sensors are assumed to have a fixed communication and a fixed sensing range, which can significantly vary depending on the type of sensing performed. This simple framework serves to benchmark a multi objective genetic algorithm (MOGA) for the sensor placement, where the two competing objectives considered are the total sensor coverage and the lifetime of the network. The MOGA is then used to show that, for different relative sensing ranges, two fundamentally different types of layouts are obtained: one with the sensors closely packed together, the other with the sensors organized in a hub-and-spoke manner. The ratio of sensing to communication range is shown to be the discriminating factor.

Published in:

Vehicular Technology Conference, 2004. VTC 2004-Spring. 2004 IEEE 59th  (Volume:5 )

Date of Conference: