By Topic

High-rate punctured convolutional self-doubly orthogonal codes for iterative threshold decoding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Haccoun, D. ; Dept. of Electr. Eng., Ecole Polytechnique de Montreal, Que., Canada ; Cardinal, C.

The puncturing technique allows obtaining high-rate convolutional codes from low-rate convolutional codes used as mother codes. This technique has been successfully applied to generate good high-rate convolutional codes which are suitable for Viterbi and sequential decoding. In this paper, we investigate the puncturing technique for convolutional self-doubly orthogonal codes (CSO2C) which are decoded using an iterative threshold-decoding algorithm. Based on an analysis of iterative threshold decoding of the rate-R=b/(b+1) punctured systematic CSO2C, the required properties of the rate-R=1/2 systematic convolutional codes (SCCs) used as mother codes are derived. From this analysis, it is shown that there is no need for the punctured mother codes to respect all the required conditions, in order to maintain the double orthogonality at the second iteration step of the iterative threshold-decoding algorithm. The results of the search for the appropriate rate-R=1/2 SCCs used as mother codes to yield a large number of punctured codes of rates 2/3≤R≤6/7 are presented, and some of their error performances evaluated.

Published in:

Communications, IEEE Transactions on  (Volume:53 ,  Issue: 1 )