By Topic

Ray-chaotic footprints in deterministic wave dynamics: a test model with coupled Floquet-type and ducted-type mode characteristics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
G. Castaldi ; Waves Group, Univ. of Sannio, Benevento, Italy ; V. Fiumara ; V. Galdi ; V. Pierro
more authors

Ray chaos, manifested by the exponential divergence of trajectories in an originally thin ray bundle, can occur even in linear electromagnetic propagation environments, due to the inherent nonlinearity of ray-tracing maps. In this paper, we present a novel (two-dimensional) test example of such an environment which embodies intimately coupled refractive wave-trapping and periodicity-induced multiple scattering phenomenologies, and which is amenable to explicit full-wave analysis. Though strictly nonchaotic, it is demonstrated that under appropriate conditions which are inferred from a comprehensive parametric database generated via the above-noted rigorous reference solution, the high-frequency wave dynamics exhibits trends toward irregularity and other peculiar characteristics; these features can be interpreted as "ray-chaotic footprints", and they are usually not observed in geometries characterized by "regular" ray behavior. In this connection, known analogies from other disciplines (particularly quantum physics) are briefly reviewed and related to the proposed test configuration. Moreover, theoretical implications and open issues are discussed, and potential applications are conjectured.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:53 ,  Issue: 2 )