By Topic

Generalized analytical technique for the synthesis of unequally spaced arrays with linear, planar, cylindrical or spherical geometry

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kumar, B.P. ; Dept. of Electr. & Electron. Eng., California State Univ., Sacramento, CA ; Branner, G.R.

An effective method for optimizing the performance of a fixed current distribution, uniformly spaced antenna array has been to adjust its element positions to provide performance improvement. In comparison with the default uniform structure, this approach yields performance improvements such as smaller sidelobe levels or beamwidth values. Additionally, it provides practical advantages such as reductions in size, weight and number of antenna elements. The objective of this paper is to describe a unified mathematical approach to nonlinear optimization of multidimensional array geometries. The approach utilizes a class of limiting properties of sinusoidal, Bessel or Legendre functions that are dictated by the array geometry addressed. The efficacy of the method is demonstrated by its generalized application to synthesis of rectangular, cylindrical and spherical arrays. The unified mathematical approach presented below is a synthesis technique founded on the mathematical transformation of the desired field pattern, followed by the application of limiting forms of the transformation, and resulting in the development of a closed form expression for the element positions. The method offers the following advantages over previous techniques such as direct nonlinear optimization or genetic algorithms. First, it is not an iterative, searching algorithm, and provides element spacing values directly in a single run of the algorithm, thereby saving valuable CPU time and memory storage. Second, It permits the array designer to place practical constraints on the array geometry, (e.g., the minimum/maximum spacing between adjacent elements)

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:53 ,  Issue: 2 )