By Topic

GA-based evolutionary identification algorithm for unknown structured mechatronic systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Iwasaki, M. ; Dept. of Comput. Sci. & Eng., Nagoya Inst. of Technol., Japan ; Miwa, M. ; Matsui, N.

Soft computing techniques, e.g., neural networks, fuzzy inference, evolutionary computation, and chaos theory, have been applied to a wide variety of control systems in industry because of their control capability and flexibility. They are also powerful to handle the complicated mechatronic systems with various nonlinearities which are difficult to model using mathematical formulas. In order to achieve the system identification of unknown structured mechatronic systems, This work presents a novel evolutionary algorithm using genetic algorithms (GAs), where the optimal mathematical structure of plant mechanisms and the combination of parameters can be autonomously determined by means of the optimization ability of the GA. The effectiveness of the proposed identification has been verified by experiments with comparative studies, using the typical mechanical systems with velocity controller.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:52 ,  Issue: 1 )