By Topic

Warpage-induced lithographic limitations of FR-4 and the need for novel board materials for future microvia and global interconnect needs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Banerji, S. ; Packaging Res. Center, Georgia Inst. of Technol., Atlanta, GA ; Raj, P.M. ; Bhattacharya, S. ; Tummala, R.R.

The effect of warpage on lithographic capabilities of organic circuit boards with multilayered thin film buildup was investigated. Two to six epoxy layers were built on various candidate boards to characterize the warpage and correlate it with analytical models. Underlying mechanisms were investigated and novel parameters defined to correlate warpage with photodefinition of ultrafine lines and vias on the board. Based on the experiments, warpage specifications for the multifunctional multilayered requirements in a proposed system-on-package (SOP) structure were defined. Experimentally validated FEM models were used to estimate the warpage during the multilayered buildup. Results show that FR-4 is not suitable for future high-density packaging needs and underscore the need for stiffer ceramic-based circuit board materials as replacement for FR-4

Published in:

Advanced Packaging, IEEE Transactions on  (Volume:28 ,  Issue: 1 )