By Topic

Extraction of ϵr(f) and tanδ(f) for printed circuit board insulators up to 30 GHz using the short-pulse propagation technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Deutsch, A. ; IBM T. J. Watson Res. Center, Yorktown Heights, NY ; Winkel, T.-M. ; Kopcsay, G.V. ; Surovic, C.W.
more authors

In this paper, the self-consistent, frequency-dependent dielectric constant epsivr(f) and dielectric loss tandelta(f) of several materials are determined over the range 2 to 30 GHz using a short-pulse propagation technique and an iterative extraction based on a rational function expansion. The simple measurement technique is performed in the time domain on representative printed circuit board wiring. Broadband, fully causal transmission-line models based on these results are generated up to 50 GHz for card wiring using low loss materials including BT, Nelco N4000-13, and Nelco N4000-13SI. Simulation and modeling results highlight the need for the accurate frequency-dependent dielectric loss extraction. Signal propagation based on these results shows very good agreement with measured step and pulse time-domain excitations and provides validation of the measurement and model generation technique

Published in:

Advanced Packaging, IEEE Transactions on  (Volume:28 ,  Issue: 1 )