By Topic

Revisiting trilateration for robot localization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Thomas, F. ; Inst. de Robotica i Informatica Ind., Barcelona, Spain ; Ros, L.

Locating a robot from its distances, or range measurements, to three other known points or stations is a common operation, known as trilateration. This problem has been traditionally solved either by algebraic or numerical methods. An approach that avoids the direct algebrization of the problem is proposed here. Using constructive geometric arguments, a coordinate-free formula containing a small number of Cayley-Menger determinants is derived. This formulation accommodates a more thorough investigation of the effects caused by all possible sources of error, including round-off errors, for the first time in this context. New formulas for the variance and bias of the unknown robot location estimation, due to station location and range measurements errors, are derived and analyzed. They are proved to be more tractable compared with previous ones, because all their terms have geometric meaning, allowing a simple analysis of their asymptotic behavior near singularities.

Published in:

Robotics, IEEE Transactions on  (Volume:21 ,  Issue: 1 )