Cart (Loading....) | Create Account
Close category search window

Determination of the growth strain of LPCVD polysilicon

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yuping Wang ; Dept. of Civil Eng., Case Western Reserve Univ., Cleveland, OH, USA ; Ballarini, R. ; Kahn, Harold ; Heuer, A.H.

This work presents a semi-empirical procedure for determining the through-the-thickness variation of the eigenstrain (eigenstrain is a generic term for any inelastic strain, including plastic strain, free thermal expansion, phase transformation, etc.) that develops during the growth of thin polysilicon films formed using low-pressure chemical vapor deposition (LPCVD). This variation is assumed to depend on the polysilicon microstructure and deposition conditions, but not on the characteristics of the (single crystal silicon) substrate. The procedure involves the use of an elastic laminated plate model to determine the eigenstrain distribution that predicts the experimentally measured substrate curvatures. In comparison to the "shaving method" presented by A.Ni et al., which relies on incremental etching of a single specimen, an alternative experimental procedure is followed to measure the substrate curvatures of a series of different thickness films. While being significantly more time-consuming, the alternative procedure was expected to lead to improved predictions of the eigenstrain distribution, as it avoids the nonuniform film thicknesses produced by the etching procedure. However, a comparison of the curvature histories measured using the two approaches demonstrates that, as long as sufficiently small increments are used in the shaving method, then the improvement is insignificant. This suggests that the plasma etching does not alter the polysilicon's intrinsic growth strain, and that the etch rate nonuniformities across the substrate are small. The eigenstrain distributions could be used, in conjunction with structural mechanics models, to design multilayered polysilicon devices with prescribed curvatures.

Published in:

Microelectromechanical Systems, Journal of  (Volume:14 ,  Issue: 1 )

Date of Publication:

Feb. 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.