By Topic

A new methodology to investigate fracture toughness of freestanding MEMS and advanced materials in thin film form

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Espinosa, H.D. ; Dept. of Mech. Eng., Northwestern Univ., Evanston, IL, USA ; Bei Peng

This work presents a novel membrane deflection fracture experiment (MDFE) to investigate the fracture toughness of microelectromechanical systems (MEMS) and other advanced materials in thin film form. It involves the stretching of freestanding thin-film membranes, in a fixed-fixed configuration, containing preexisting cracks. The fracture behavior of ultrananocrystalline diamond (UNCD), a material developed at Argonne National Laboratory, is investigated to illustrate the methodology. When the fracture initiates from sharp cracks, produced by indentation, the fracture toughness was found to be 4.5±0.25 MP m12/. When the fracture initiates from blunt notches with radii about 100 nm, machined by focused ion beam (FIB), the mean value of the apparent fracture toughness was found to be 6.9 MPa m12/. Comparison of these two values, using the model proposed by Drory et al., provides a correction factor of two-thirds, which corresponds to a mean value of ρ/2x=1/2.

Published in:

Microelectromechanical Systems, Journal of  (Volume:14 ,  Issue: 1 )