By Topic

Real-time mobility tracking algorithms for cellular networks based on Kalman filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Z. R. Zaidi ; Dept. of Electr. & Comput. Eng., George Mason Univ., Fairfax, VA, USA ; B. L. Mark

We propose two algorithms for real-time tracking of the location and dynamic motion of a mobile station in a cellular network using the pilot signal strengths from neighboring base stations. The underlying mobility model is based on a dynamic linear system driven by a discrete command process that determines the mobile station's acceleration. The command process is modeled as a semi-Markov process over a finite set of acceleration levels. The first algorithm consists of an averaging filter for processing pilot signal, strength measurements and two Kalman filters, one to estimate the discrete command process and the other to estimate the mobility state. The second algorithm employs a single Kalman filter without prefiltering and is able to track a mobile station even when a limited set of pilot signal measurements is available. Both of the proposed tracking algorithms can be used to predict future mobility behavior, which can be, useful in resource allocation applications. Our numerical results show that the proposed tracking algorithms perform accurately over a wide range of mobility parameter values.

Published in:

IEEE Transactions on Mobile Computing  (Volume:4 ,  Issue: 2 )