Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Subband image coding using entropy-coded quantization over noisy channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tanabe, N. ; Maryland Univ., College Park, MD, USA ; Farvardin, N.

Under the assumption of noiseless transmission the authors develop two entropy-coded subband image coding schemes. The difference between these schemes is the procedure used for encoding the lowest frequency subband: predictive coding is used in one system and transform coding in the other. After demonstrating the unacceptable sensitivity of these schemes to transmission noise, the authors also develop a combined source/channel coding scheme in which rate-compatible convolutional codes are used to provide protection against channel noise. A packetization scheme to prevent infinite error propagation is used and an algorithm for optimal assignment of bits between the source and channel encoders of different subbands is developed. It is shown that, in the presence of channel noise, these channel-optimized schemes offer dramatic performance improvements

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:10 ,  Issue: 5 )