By Topic

Bayesian color estimation for adaptive vision-based robot localization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. Schulz ; Dept. of Comput. Sci. & Eng., Washington Univ., Seattle, WA, USA ; D. Fox

In this article we introduce a hierarchical Bayesian model to estimate a set of colors with a mobile robot. Estimating colors is particularly important if objects in an environment can only be distinguished by their color. Since the appearance of colors can change due to variations in the lighting condition, a robot needs to adapt its color model to such changes. We propose a two level Gaussian model in which the lighting conditions are estimated at the upper level using a switching Kalman filter. A hierarchical Bayesian technique learns Gaussian priors from data collected in other environments. Furthermore, since estimation of the color model depends on knowledge of the robot's location, we employ a Rao-Blackwellised particle filter to maintain a joint posterior over robot positions and lighting conditions. We evaluate the technique in the context of the RoboCup AIBO league, where a legged AIBO robot has to localize itself in an environment similar to a soccer field. Our experiments show that the robot can localize under different lighting conditions and adapt to changes in the lighting condition, for example, due to a light being turned on or off.

Published in:

Intelligent Robots and Systems, 2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on  (Volume:2 )

Date of Conference:

28 Sept.-2 Oct. 2004