By Topic

Using the topological skeleton for scalable global metrical map-building

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. Modayil ; Dept. of Comput. Sci., Texas Univ., Austin, TX, USA ; P. Beeson ; B. Kuipers

Most simultaneous localization and mapping (SLAM) approaches focus on purely metrical approaches to map-building. We present a method for computing the global metrical map that builds on the structure provided by a topological map. This allows us to factor the uncertainty in the map into local metrical uncertainty (which is handled well by existing SLAM methods), global topological uncertainty (which is handled well by recently developed topological map-learning methods), and global metrical uncertainty (which can be handled effectively once the other types of uncertainty are factored out). We believe that this method for building the global metrical map is scalable to very large environments.

Published in:

Intelligent Robots and Systems, 2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on  (Volume:2 )

Date of Conference:

28 Sept.-2 Oct. 2004