By Topic

Performance analysis and improvement of decorrelating detection for multirate DS/CDMA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Huang Lee ; Dept. of Electr. Eng., Nat. Taiwan Inst. of Technol., Taipei, Taiwan ; Kwang-Cheng Chen

We study access strategies for decorrelating detection applied in multirate direct-sequence code-division multiple-access (DS/CDMA) systems, including multimodulation (MM), multicode (MC), and variable-spreading-length (VSL) schemes by jointly considering signal constellations and multiple-access interference. The mathematical analysis shows that when the number of active users is large, the MM scheme outperforms MC and VSL schemes especially for high-rate transmission. We also conclude that the design of modulation is important in MC and VSL schemes. Numerical analysis demonstrates that applying 4-PSK instead of 2-PSK in MC and VSL schemes can improve about 9 dB performance gain. In addition, by considering cross-correlation of noise components, we propose a detector that minimizes the symbol error probability under the constraint that the complexity grows linearly with the number of active users as decorrelating detectors. Simulations show that about 4 dB performance gain over conventional decorrelating detectors can be achieved for multirate DS/CDMA communications.

Published in:

Communications Letters, IEEE  (Volume:9 ,  Issue: 2 )