By Topic

High-performance RF mixer and operational amplifier BiCMOS circuits using parasitic vertical bipolar transistor in CMOS technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ilku Nam ; Dept. of Electr. Eng. & Comput. Sci., Korea Adv. Inst. of Sci. & Technol., Daejeon, South Korea ; Kwyro Lee

The electrical characteristics of the parasitic vertical NPN (V-NPN) BJT available in deep n-well 0.18-μm CMOS technology are presented. It has about 20 of current gain, 7 V of collector-emitter breakdown voltage, 20 V of collector-base breakdown voltage, 40 V of Early voltage, about 2 GHz of cutoff frequency, and about 4 GHz of maximum oscillation frequency at room temperature. The corner frequency of 1/f noise is lower than 4 kHz at 0.5 mA of collector current. The double-balanced RF mixer using V-NPN shows almost free 1/f noise as well as an order of magnitude smaller dc offset compared with CMOS circuit and 12 dB flat gain almost up to the cutoff frequency. The V-NPN operational amplifier for baseband analog circuits has higher voltage gain and better input noise and input offset performance than the CMOS ones at the identical current. These circuits using V-NPN provide the possibility of high-performance direct conversion receiver implementation in CMOS technology.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:40 ,  Issue: 2 )