By Topic

An estimate of the bottom compressional wave speed profile in the northeastern South China Sea using "Sources of Opportunity"

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Ying-Tsong Lin ; Nat. Taiwan Univ., Taipei, Taiwan ; J. F. Lynch ; N. Chotiros ; Chi-Fang Chen
more authors

The inversion of a broad-band "source of opportunity" signal for bottom geoacoustic parameters in the northeastern South China Sea (SCS) is presented, which supplements the towed source and chirp sonar bottom inversions that were performed as part of the Asian Seas International Acoustics Experiment (ASIAEX). This source of opportunity was most likely a "dynamite fishing" signal, which has sufficient low-frequency content (5-500 Hz) to make it complimentary to the somewhat higher frequency J-15-3 towed source (50-260 Hz) signals and the much higher frequency (1-10 kHz) chirp signals. This low frequency content will penetrate deeper into the bottom, thus extending the other inverse results. Localization of the source is discussed, using both a horizontal array for azimuthal steering and the "water wave" part of the pulse arrival for distance estimation. A linear broad-band inverse is performed, and three new variants of the broad-band inverse, based on: 1) the Airy phase; 2) the cutoff frequency; and 3) a range-dependent medium are presented. A multilayer model of the bottom compressional wave speed is obtained, and error estimates for this model are shown, both for the range-independent approximation to the waveguide and for the range-dependent waveguide. Directions for future research are discussed.

Published in:

IEEE Journal of Oceanic Engineering  (Volume:29 ,  Issue: 4 )