By Topic

Unsupervised learning and mapping of active brain functional MRI signals based on hidden semi-Markov event sequence models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Faisan, S. ; Lab. des Sci. de l''Image, Univ. Louis Pasteur, Strasbourg, France ; Thoraval, L. ; Armspach, J.-P. ; Metz-Lutz, M.-N.
more authors

A novel functional magnetic resonance imaging (fMRI) brain mapping method is presented within the statistical modeling framework of hidden semi-Markov event sequence models (HSMESMs). Neural activation detection is formulated at the voxel level in terms of time coupling between the sequence of hemodynamic response onsets (HROs) observed in the fMRI signal, and an HSMESM of the hidden sequence of task-induced neural activations. The sequence of HRO events is derived from a continuous wavelet transform (CWT) of the fMRI signal. The brain activation HSMESM is built from the timing information of the input stimulation protocol. The rich mathematical framework of HSMESMs makes these models an effective and versatile approach for fMRI data analysis. Solving for the HSMESM Evaluation and Learning problems enables the model to automatically detect neural activation embedded in a given set of fMRI signals, without requiring any template basis function or prior shape assumption for the fMRI response. Solving for the HSMESM Decoding problem allows to enrich brain mapping with activation lag mapping, activation mode visualizing, and hemodynamic response function analysis. Activation detection results obtained on synthetic and real epoch-related fMRI data demonstrate the superiority of the HSMESM mapping method with respect to a real application case of the statistical parametric mapping (SPM) approach. In addition, the HSMESM mapping method appears clearly insensitive to timing variations of the hemodynamic response, and exhibits low sensitivity to fluctuations of its shape.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:24 ,  Issue: 2 )