By Topic

Main chain representation for evolutionary algorithms applied to distribution system reconfiguration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Delbem, A.C.B. ; Univ. of Sao Paulo, Sao Carlos, Brazil ; de Carvalho, A.C.Pd.L.F. ; Bretas, N.G.

Distribution system problems, such as planning, loss minimization, and energy restoration, usually involve network reconfiguration procedures. The determination of an optimal network configuration is, in general, a combinatorial optimization problem. Several Evolutionary Algorithms (EAs) have been proposed to deal with this complex problem. Encouraging results have been achieved by using such approaches. However, the running time may be very high or even prohibitive in applications of EAs to large-scale networks. This limitation may be critical for problems requiring online solutions. The performance obtained by EAs for network reconfiguration is drastically affected by the adopted computational tree representation. Inadequate representations may drastically reduce the algorithm performance. Thus, the employed representation for chromosome encoding and the corresponding operators are very important for the performance achieved. An efficient data structure for tree representation may significantly increase the performance of evolutionary-based approaches for network reconfiguration problems. The present paper proposes a tree encoding and two genetic operators to improve the EA performance for network reconfiguration problems. The corresponding EA approach was applied to reconfigure large-scale systems. The performance achieved suggests that the proposed methodology can provide an efficient alternative for reconfiguration problems.

Published in:

Power Systems, IEEE Transactions on  (Volume:20 ,  Issue: 1 )