By Topic

Improving voltage stability by reactive power reserve management

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Feng Dong ; Electr. & Comput. Eng. Dept., Univ. of Missouri-Rolla, Rolla, MO, USA ; Chowdhury, B.H. ; Crow, M.L. ; Acar, Levent

The amount of reactive reserves at generating stations is a measure of the degree of voltage stability. With this perspective, an optimized reactive reserve management scheme based on the optimal power flow is proposed. Detailed models of generator limiters, such as those for armature and field current limiting must be considered in order to utilize the maximum reactive power capability of generators, so as to meet reactive power demands during voltage emergencies. Participation factors for each generator in the management scheme are predetermined based on the voltage-var (V-Q) curve methodology. The Bender's decomposition methodology is applied to the reactive reserve management problem. The resulting effective reserves and the impact on voltage stability are studied on a reduced Western Electric Coordinating Council system. Results prove that the proposed method can improve both static and dynamic voltage stability.

Published in:

Power Systems, IEEE Transactions on  (Volume:20 ,  Issue: 1 )