By Topic

Latency techniques for time-domain power system transients simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Moreira, F.A. ; Univ. of British Columbia, Vancouver, BC, Canada ; Marti, Jose R.

This work presents the techniques derived for an efficient and accurate latency exploitation of electric networks using time-domain transients simulation software, such as the "electromagnetic transients program" (EMTP). Latency exploitation is related to the capability of numerically solving the differential equations governing the behavior of electric networks with different integration steps. With this approach, the limitations of a single fixed size integration step, as required by EMTP-type programs, can be overcome, resulting in a decreased number of numerical operations for a given total simulation time. Using a network partitioning and recombination technique, latency exploitation is achieved using noniterative solutions. Results are shown for networks consisting exclusively of lumped elements and networks with transmission lines and are compared with those obtained from conventional EMTP simulations.

Published in:

Power Systems, IEEE Transactions on  (Volume:20 ,  Issue: 1 )