By Topic

Estimating optimal feature subsets using efficient estimation of high-dimensional mutual information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chow, T.W.S. ; City Univ. of Hong Kong, China ; Huang, D.

A novel feature selection method using the concept of mutual information (MI) is proposed in this paper. In all MI based feature selection methods, effective and efficient estimation of high-dimensional MI is crucial. In this paper, a pruned Parzen window estimator and the quadratic mutual information (QMI) are combined to address this problem. The results show that the proposed approach can estimate the MI in an effective and efficient way. With this contribution, a novel feature selection method is developed to identify the salient features one by one. Also, the appropriate feature subsets for classification can be reliably estimated. The proposed methodology is thoroughly tested in four different classification applications in which the number of features ranged from less than 10 to over 15000. The presented results are very promising and corroborate the contribution of the proposed feature selection methodology.

Published in:

Neural Networks, IEEE Transactions on  (Volume:16 ,  Issue: 1 )