By Topic

Incremental training of support vector machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

We propose a new algorithm for the incremental training of support vector machines (SVMs) that is suitable for problems of sequentially arriving data and fast constraint parameter variation. Our method involves using a "warm-start" algorithm for the training of SVMs, which allows us to take advantage of the natural incremental properties of the standard active set approach to linearly constrained optimization problems. Incremental training involves quickly retraining a support vector machine after adding a small number of additional training vectors to the training set of an existing (trained) support vector machine. Similarly, the problem of fast constraint parameter variation involves quickly retraining an existing support vector machine using the same training set but different constraint parameters. In both cases, we demonstrate the computational superiority of incremental training over the usual batch retraining method.

Published in:

IEEE Transactions on Neural Networks  (Volume:16 ,  Issue: 1 )