Cart (Loading....) | Create Account
Close category search window
 

Scalable QoS-based resource allocation in hierarchical networked environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ghosh, S. ; Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Rajkumar, R. ; Hansen, J. ; Lehoczky, J.

In this paper, we study the problem of allocating end-to-end bandwidth to each of multiple traffic flows in a large-scale network. We adopt the QoS-based resource allocation model (Q-RAM) (K-S. Lui et al., 2000), whereby each flow derives an utility based on the amount of its allocated bandwidth. Our goal therefore is to maximize the total utility derived across all network flows. The NP-hard nature of the resource allocation problem is compounded by the need to select an appropriate path between each source-destination pair. We propose a hierarchical decomposition scheme that allows the resource allocation problem to be solved in a decentralized and scalable fashion. The hierarchy we use is based on a (natural) partitioning of the network into subnets, with resource allocation decisions made on a subnet-by-subnet basis. A novel distributed transaction scheme is used to ensure that resource allocations are consistent across all the subnets traversed by each flow. We provide both analytical and experimental evidence to show that our scheme is very scalable and yet does not sacrifice the quality of the allocations.

Published in:

Real Time and Embedded Technology and Applications Symposium, 2005. RTAS 2005. 11th IEEE

Date of Conference:

7-10 March 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.