By Topic

Adaptively merging large-scale range data with reflectance properties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sagawa, R. ; Inst. of Sci. & Ind. Res., Osaka Univ., Japan ; Nishino, K. ; Ikeuchi, K.

In this paper, we tackle the problem of geometric and photometric modeling of large intricately shaped objects. Typical target objects we consider are cultural heritage objects. When constructing models of such objects, we are faced with several important issues that have not been addressed in the past-issues that mainly arise due to the large amount of data that has to be handled. We propose two novel approaches to efficiently handle such large amounts of data: A highly adaptive algorithm for merging range images and an adaptive nearest-neighbor search to be used with the algorithm. We construct an integrated mesh model of the target object in adaptive resolution, taking into account the geometric and/or photometric attributes associated with the range images. We use surface curvature for the geometric attributes and (laser) reflectance values for the photometric attributes. This adaptive merging framework leads to a significant reduction in the necessary amount of computational resources. Furthermore, the resulting adaptive mesh models can be of great use for applications such as texture mapping, as we will briefly demonstrate. Additionally, we propose an additional test for the k-d tree nearest-neighbor search algorithm. Our approach successfully omits back-tracking, which is controlled adaptively depending on the distance to the nearest neighbor. Since the main consumption of computational cost lies in the nearest-neighbor search, the proposed algorithm leads to a significant speed-up of the whole merging process. In this paper, we present the theories and algorithms of our approaches with pseudo code and apply them to several real objects, including large-scale cultural assets.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:27 ,  Issue: 3 )