Cart (Loading....) | Create Account
Close category search window
 

An extended Chi2 algorithm for discretization of real value attributes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chao-Ton Su ; Dept. of Ind. Eng. & Eng. Manage., Nat. Tsing Hua Univ., Hsinchu, Taiwan ; Jyh-Hwa Hsu

The variable precision rough sets (VPRS) model is a powerful tool for data mining, as it has been widely applied to acquire knowledge. Despite its diverse applications in many domains, the VPRS model unfortunately cannot be applied to real-world classification tasks involving continuous attributes. This requires a discretization method to preprocess the data. Discretization is an effective technique to deal with continuous attributes for data mining, especially for the classification problem. The modified Chi2 algorithm is one of the modifications to the Chi2 algorithm, replacing the inconsistency check in the Chi2 algorithm by using the quality of approximation, coined from the rough sets theory (RST), in which it takes into account the effect of degrees of freedom. However, the classification with a controlled degree of uncertainty, or a misclassification error, is outside the realm of RST. This algorithm also ignores the effect of variance in the two merged intervals. In this study, we propose a new algorithm, named the extended Chi2 algorithm, to overcome these two drawbacks. By running the software of See5, our proposed algorithm possesses a better performance than the original and modified Chi2 algorithms.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:17 ,  Issue: 3 )

Date of Publication:

March 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.