By Topic

Projective clustering by histograms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ng, E.K.K. ; Dept. of Comput. Sci., Chinese Univ. of Hong Kong, Shatin, China ; Fu, A.W.-C. ; Wong, R.C.-W.

Recent research suggests that clustering for high-dimensional data should involve searching for "hidden" subspaces with lower dimensionalities, in which patterns can be observed when data objects are projected onto the subspaces. Discovering such interattribute correlations and location of the corresponding clusters is known as the projective clustering problem. We propose an efficient projective clustering technique by histogram construction (EPCH). The histograms help to generate "signatures", where a signature corresponds to some region in some subspace, and signatures with a large number of data objects are identified as the regions for subspace clusters. Hence, projected clusters and their corresponding subspaces can be uncovered. Compared to the best previous methods to our knowledge, this approach is more flexible in that less prior knowledge on the data set is required, and it is also much more efficient. Our experiments compare behaviors and performances of this approach and other projective clustering algorithms with different data characteristics. The results show that our technique is scalable to very large databases, and it is able to return accurate clustering results.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:17 ,  Issue: 3 )