Cart (Loading....) | Create Account
Close category search window
 

Using AUC and accuracy in evaluating learning algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jin Huang ; Dept. of Comput. Sci., Univ. of Western Ontario, London, Ont., Canada ; Ling, C.X.

The area under the ROC (receiver operating characteristics) curve, or simply AUC, has been traditionally used in medical diagnosis since the 1970s. It has recently been proposed as an alternative single-number measure for evaluating the predictive ability of learning algorithms. However, no formal arguments were given as to why AUC should be preferred over accuracy. We establish formal criteria for comparing two different measures for learning algorithms and we show theoretically and empirically that AUC is a better measure (defined precisely) than accuracy. We then reevaluate well-established claims in machine learning based on accuracy using AUC and obtain interesting and surprising new results. For example, it has been well-established and accepted that Naive Bayes and decision trees are very similar in predictive accuracy. We show, however, that Naive Bayes is significantly better than decision trees in AUC. The conclusions drawn in this paper may make a significant impact on machine learning and data mining applications.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:17 ,  Issue: 3 )

Date of Publication:

March 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.