By Topic

Five, six, and seven-term Karatsuba-like formulae

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Montgomery, P.L. ; Microsoft Corp., Redmond, WA, USA

The Karatsuba-Ofman algorithm starts with a way to multiply two 2-term (i.e., linear) polynomials using three scalar multiplications. There is also a way to multiply two 3-term (i.e., quadratic) polynomials using six scalar multiplications. These are used within recursive constructions to multiply two higher-degree polynomials in subquadratic time. We present division-free formulae, which multiply two 5-term polynomials with 13 scalar multiplications, two 6-term polynomials with 17 scalar multiplications, and two 7-term polynomials with 22 scalar multiplications. These formulae may be mixed with the 2-term and 3-term formulae within recursive constructions, leading to improved bounds for many other degrees. Using only the 6-term formula leads to better asymptotic performance than standard Karatsuba. The new formulae work in any characteristic, but simplify in characteristic 2. We describe their application to elliptic curve arithmetic over binary fields. We include some timing data.

Published in:

Computers, IEEE Transactions on  (Volume:54 ,  Issue: 3 )