By Topic

Architecture and implementation of a vector/SIMD multiply-accumulate unit

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Danysh, A. ; Freescale Semicond., Austin, TX, USA ; Tan, D.

This work presents 64-bit fixed-point vector multiply-accumulator (MAC) architecture capable of supporting multiple precisions. The vector MAC can perform one 64×64, two 32×32, four 16×16, or eight 8×8 bit signed/unsigned multiply using essentially the same hardware as a scalar 64-bit MAC and with only a small increase in delay. The scalar MAC architecture is "vectorized" by inserting mode-dependent multiplexing into the partial product generation and by inserting mode-dependent kills in the carry chain of the reduction tree and the final carry-propagate adder. This is an example of "shared segmentation" in which the existing scalar structure is segmented and then shared between vector modes. The vector MAC is area efficient and can be fully pipelined, which makes it suitable for high-performance processors and, possibly, dynamically reconfigurable processors. The "shared segmentation" method is compared to an alternative method, referred to as the "shared subtree" method, by implementing vector MAC designs using two different technologies and three different vector widths.

Published in:

Computers, IEEE Transactions on  (Volume:54 ,  Issue: 3 )