Cart (Loading....) | Create Account
Close category search window

Speculative incoherent cache protocols

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jaehyuk Huh ; Texas Univ., Austin, TX ; Burger, D. ; Jichuan Chang ; Sohi, G.S.

Multiprocessing and multithreading are becoming ubiquitous even on single chips. With increasing cache sizes, coherence misses in such systems will account for a larger fraction of all cache misses. As communication latencies increase, this larger fraction of coherence misses will cause significant and increased performance losses. Tuning coherence protocols for specific communication patterns and applications can reduce communication latencies. However, these optimizations increase a protocol's design complexity, making the protocol difficult to verify. A competing approach requires parallel programmers to tune applications to work well with simpler protocols. Speculative execution has successfully improved performance in various scenarios. We propose a new type of load speculation, called coherence decoupling. Coherence decoupling is a microarchitectural mechanism that implements separate protocols for speculative use and for the eventual verification of values. The technique reduces the effect of long communication latencies while mitigating the burdens on the coherence protocol designer and the parallel programmer

Published in:

Micro, IEEE  (Volume:24 ,  Issue: 6 )

Date of Publication:

Nov.-Dec. 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.