By Topic

Fixed-structure robust controller synthesis based on symbolic-numeric computation: design algorithms with a CACSD toolbox

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Anai, H. ; Fujitsu Lab. Ltd., Kawasaki, Japan ; Yanami, H. ; Hara, S. ; Sakabe, K.

We propose a new method with a software tool for parametric robust control synthesis by symbolic-numeric computation. The method is a parameter space approach and it is especially effective for analysis and design of fixed structure controllers of rational type. The real quantifier elimination (QE), which is one of the recent progresses in the symbolic computation, plays a key role in our development The QE-based approach can uniformly deal with a lot of important design specifications for robust control such as frequency restricted H norm constraints, stability (gain/phase) margin and stability radius specifications, and pole location requirement by reducing such specifications to a particular type of formulas called a "sign definite condition (SDC)". This is also useful for improving the efficiency of QE computations since we can utilize an efficient QE algorithm specialized to the SDC. We have developed a MATLAB toolbox for robust parametric control based on a parameter space approach accomplished by QE. The QE-based parameter space approach and numerical simulation of specifications for specific controller parameter values taken from a controller parameter space are integrated conveniently in our toolbox with the assistance of a graphical user interface. This enables control engineers to achieve multi-objective robust controller synthesis smoothly. We also discuss how to merge the numerical computation and the symbolic operation to make our new design methods more efficient in practical control design.

Published in:

Control Applications, 2004. Proceedings of the 2004 IEEE International Conference on  (Volume:2 )

Date of Conference:

2-4 Sept. 2004