By Topic

Automatic detection and tracking of a small surface watercraft in shallow water using a high-frequency active sonar

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lo, K.W. ; Maritime Operations Div., Defence Sci. & Technol. Organ., Pyrmont, NSW, Australia ; Ferguson, B.G.

A high-frequency (HF) active sonar can be used to detect and track a small fast surface watercraft in shallow water based on the evolution of the watercraft wake observed in the sonar image sequence. An automatic detection and tracking (ADT) algorithm is described for this novel application. For each ping, the measurement of the target's polar position consists of 2 steps. First, the target bearing is estimated by finding the direction of arrival of the cavitation noise emitted by the watercraft. Then range measurements are extracted from the range profile (constant-angle cut of the sonar image) at the estimated target bearing. Range normalization and clutter map processing are used to reduce the number of false measurements. Estimates of the target's Cartesian position and velocity are updated at the sonar pulse repetition rate using the Kalman filter with debiased consistent converted measurements and nearest neighbour data association. The proposed algorithm is demonstrated using real data.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:40 ,  Issue: 4 )