By Topic

Extended irreversible thermodynamics modeling for self-heating and dissipation in piezoelectric ceramics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lu, X. ; Sch. of Aerosp. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Hanagud, S.V.

Self-heating or dissipation of piezoelectric ceramic elements is observed to be severe under dynamic operations even in the linear range. A nonequilibrium thermodynamic model is developed to delineate the coupled irreversible mechanical, electric, and thermal processes, which jointly contribute to dissipation. Specifically, additional nonequilibrium state variables, also known as thermodynamic fluxes, are brought in to describe each of these processes. The characteristic relaxation of these processes is modeled. The nonnegative rate of entropy production is found to be in quadratic form of thermodynamics fluxes. The energy balance equation, which governs the transformation between different energy forms, is obtained in the framework of extended irreversible thermodynamics. Using this model, the dissipation of a piezoceramic stack actuator under harmonic electric or mechanical loadings in linear operation range is studied. The harmonic-balance methods are utilized as solution techniques. In contrast to the existing piezoelectric dissipation models, the dissipation by the developed model is verified to nonlinearly depend on operating frequency, with a peak dissipation occurring at some operating frequency that is related to characteristic relaxation of irreversible processes. The measurements of newly introduced parameters are also discussed.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:51 ,  Issue: 12 )