Cart (Loading....) | Create Account
Close category search window
 

A model for post-occlusive reactive hyperemia as measured with laser-Doppler perfusion monitoring

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
de Mul, F.F.M. ; Dept. of Biomed. Eng., Univ. of Groningen, Netherlands ; Morales, F. ; Smit, A.J. ; Graaff, R.

To facilitate the quantitative analysis of post-occlusive reactive hyperaemia (PORH), measured with laser-Doppler perfusion monitoring (LDPM) on extremities, we present a flow model for the dynamics of the perfusion of the tissue during PORH, based on three parameters: two time constants (τ1 and τ2) and the ratio of the maximum flux and the resting flux. With these three constants quantitative comparisons between experiments will be possible and, therefore, we propose to adopt this approach as future standard. For this reason, we also developed a computer program to perform the fit of the model to measured data.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:52 ,  Issue: 2 )

Date of Publication:

Feb. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.